DPS - 5 (Thermodynamics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/60

https://youtu.be/CeDk07-SCXI

https://physicsaholics.com/note/notesDetalis/78

Written Solution on Website:-
 Video Solution on YouTube:-

Q 1. Sixty per cent of given sample of oxygen gas when raised to a high temperature dissociates into atoms. Ratio of its initial heat capacity (at constant volume) to the final heat capacity (at constant volume) will be:
(a) $\frac{8}{7}$
(b) $\frac{25}{26}$
(c) $\frac{10}{7}$
(d) $\frac{25}{27}$

Q 2. P-V diagram of a diatomic gas is a straight line passing through origin. The molar heat capacity of the gas in the process will be:
(a) $4 R$
(b) 2.5 R
(c) 3 R
(d) $\frac{4 R}{3}$

Q 3. The figure shows two paths for the change of state of a gas from A to B. The ratio of molar heat capacities in path 1 and path 2 is:

(a) >1
(b) <1
(c) 1
(d) data insufficient

Q 4. The molar heat capacity in a process of a diatomic gas if it does a work of $\frac{Q}{4}$ when a heat of Q is supplied to it is :
(a) $\frac{2}{5} R$
(b) ${ }_{2} \mathrm{R}$
(c) $\frac{10}{3} R$
(d) $\frac{6}{7} R$

Q 5. Ideal monoatomic gas is taken through a process $d Q=2 d U$. The molar heat capacity for the process is: (where CQ is heat supplied and dU is change in internal energy)
(a) 5 R
(b) 3 R
(c) R
(d) None

Q 6. n moles of a monoatomic gas undergo a cyclic process ABCDA as shown in figure. Process AD is isobaric, BC is adiabatic, CD is isochoric and DA is isothermal. The maximum and minimum temperature in the cycle are $4 \mathrm{~T}_{0}$ and T_{0} respectively. Then:

(a) $T_{B}>T_{C}>T_{D}$
(b) heat is released by the gas in the process CD
(c) heat is supplied to the gas in the process AB
(d) total heat supplied to the gas is $2 \mathrm{nRT}_{0}$ In (2)

Q 7. At ordinary temperatures, the molecules of an ideal gas have only translational and rotational kinetic energies. At high temperatures they may also have vibrational energy. As a result of this at higher temperatures: $(\mathrm{Cv}=$ molar heat capacity at constant volume)
(a) $\mathrm{C}_{v}=3 / 2 \mathrm{R}$ for a monoatomic gas
(b) $\mathrm{C}_{\mathrm{v}}>3 / 2 \mathrm{R}$ for a monoatomic gas
(c) $\mathrm{C} r<\frac{5}{2} \mathrm{R}$ for a diatomic gas
(d) $\mathrm{C}_{V}>\sum_{2}^{5} \mathrm{R}$ for a diatomic gas

Q 8. An ideal gas with adiabatic exponent ($\gamma=1.5$) undergoes a process in which work done by the gas is same as increase in internal energy of the gas. The molar heat capacity of gas for the process is:
(A) $\mathrm{C}=4 \mathrm{R}$
(B) $\mathrm{C}=0$
(C) $\mathrm{C}=2 \mathrm{R}$
(D) $\mathrm{C}=\mathrm{R}$

Q 9. A mixture of ideal gasses N_{2} and He are taken in the mass ratio of $14: 1$ respectively. Molar heat capacity of the mixture at constant pressure is.
(a) $\frac{19 R}{6}$
(B) $\frac{6 R}{19}$
(C) $\frac{13 R}{6}$
(D) $\frac{6 R}{13}$

Q 10. The molar heat capacity for an ideal gas
(a) cannot be negative
(b) must be equal to either Cv or C_{p}
(c) must lie in the range $\mathrm{Cv} \leq \mathrm{C} \leq \mathrm{C}_{\mathrm{p}}$
(d) may be zero

Q 11.
STATEMENT-1: The specific heat of a monatomic gas has value between 0 and ∞. because
STATEMENT-2: $c_{P}=\frac{5}{2} R$ and $c_{V}=\frac{3}{2} R$ for a monoatomic gas.

Answer Key

Q. $1 \quad$ c	Q. 2	c	Q. 3	b	Q. 4	c	Q. 5	b
Q.6 a,b,c	Q.7 a,d	Q. 8	a	Q.9	a	Q.10	d	
Q.11 d								

